Reinforcement learning based on local state feature learning and policy adjustment
نویسندگان
چکیده
The extension of reinforcement learning (RL) to large state space has inevitably encountered the problem of the curse of dimensionality. Improving the learning efficiency of the agent is much more important to the practical application of RL. Consider learning to optimally solve Markov decision problems in a particular domain, if the domain has particular characteristics that are attributable to each state, the agent might be able to take advantage of these features to direct the future learning. This paper firstly defines the local state feature, then a state feature function is used to generate the local state features of a state. Also a weight function is introduced to adjust current policy to the actions worth exploring. Based on the above, an improved SARSA algorithm, Feature-SARSA, is proposed. We validate our new algorithm by experiment on a complex domain, named Sokoban. The results show that the new algorithm has better performance. 2003 Elsevier Science Inc. All rights reserved.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملExtraction of Reward-Related Feature Space Using Correlation-Based and Reward-Based Learning Methods
The purpose of this article is to present a novel learning paradigm that extracts reward-related low-dimensional state space by combining correlation-based learning like Input Correlation Learning (ICO learning) and reward-based learning like Reinforcement Learning (RL). Since ICO learning can quickly find a correlation between a state and an unwanted condition (e.g., failure), we use it to ext...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 154 شماره
صفحات -
تاریخ انتشار 2003